- Personal study project for getting used to java spring
 - Stock price prediction web site
 - LSTM model trained for predict next day KOSPI close price
 - Check site from website
 
- 
data
- KOSPI close price prediction for next day
 - trained data KOSPI between '2014-01-01' to '2022-01-01'
 - test data KOSPI between '2022-01-01' to '2022-07-01'
 
 - 
regression LSTM
- model structure (LSTM, {'n_layers':1, 'bidirectional': True,"rnn_dropout":0.3,"fc_dropout":0.9})
 - mse loss 0.000741
 - When use it as category classification, up down over 0.2% increase than prev close price
- expected earning when only buy true predicted : 0.15% per day (without transaction fee(tax))
 - expected earning when all buy : -0.10% per day (without transaction fee(tax))
 
precision recall f1-score support False 0.59 0.88 0.71 50376 True 0.46 0.14 0.21 35269 accuracy 0.58 85645 macro avg 0.52 0.51 0.46 85645 weighted avg 0.54 0.58 0.51 85645 
 
- Spring
- Java 11
 - Spring boot 2.6.6
 - JPA, hibernate
 - Spring security
 - mockito
 - flyway
 - lombok
 - h2
 - mariadb
 - redis
 
 - Nuxt
- pinia
 - billboard.js
 - vue-sweetalert2
 
 - fastai
- tsai
 
 
- 스프링부트로 웹 서비스 출시하기
 - spring boot
 - java
 - Spring Security를 이용한 회원가입/로그인/로그아웃🐵
 - Spring Exception Handling
 - Spring Guide - Exception 전략
 - nuxtjs
 - pinia
 - Vuetify login
 - canva
 - termly, Privacy Policy Generator
 - tsai
 - fastai
 - Key takeaways from Kaggle’s most recent time series competition
 - Deep Learning With Weighted Cross Entropy Loss On Imbalanced Tabular Data Using FastAI
 - How to Deal With Imbalanced Classification and Regression Data
 - Delving into Deep Imbalanced Regression
 - 불균형 데이터 해결하기, 주가 예측 프로젝트
 - Stanford researchers have developed an AI model, StockBot
 







