The official SurrealDB SDK for Python.
This project uses uv for dependency management and hatch as the build tool.
Install uv:
curl -LsSf https://astral.sh/uv/install.sh | shThis project follows library best practices for dependency management:
- Minimal constraints: Uses
>=instead of exact pins for maximum compatibility - Essential only: Only direct dependencies that are actually imported
- Clean separation: Development tools in separate dependency groups
- Well-maintained tools: Avoid dependencies which go 6+ months without so much as a patch
-
Install dependencies:
# Install main dependencies uv sync # Install with dev dependencies (linting, type checking, testing) uv sync --group dev
-
Run development tools:
# Run linting uv run ruff check src/ # Run formatting uv run ruff format src/ # Run type checking uv run mypy --explicit-package-bases src/ # Run tests (with coverage) uv run scripts/run_tests.sh # Or directly: uv run pytest --cov=src/surrealdb --cov-report=term-missing --cov-report=html
-
Build the project:
uv build
We use a multi-tier testing strategy to ensure compatibility across SurrealDB versions:
# Test with default version (latest stable)
docker-compose up -d
uv run scripts/run_tests.sh
# Test against specific version
./scripts/test-versions.sh v2.1.8
# Test against different v2.x versions
SURREALDB_VERSION=v2.0.5 uv run scripts/run_tests.sh
SURREALDB_VERSION=v2.3.6 uv run scripts/run_tests.sh- Core Tests: Run on every PR against key stable versions (v2.0.5, v2.1.8, v2.2.6, v2.3.6)
- Comprehensive Tests: Run on schedule/manual trigger against all latest minor versions
- Python Compatibility: Tests all supported Python versions (3.10, 3.11, 3.12, 3.13)
Tests are designed to be version-agnostic across all supported SurrealDB v2.x versions:
- Automatically handles behavioral differences between v2.x minor versions
- No environment variable configuration required for version detection
View the SDK documentation here.
# Using pip
pip install surrealdb
# Using uv
uv add surrealdbIn this short guide, you will learn how to install, import, and initialize the SDK, as well as perform the basic data manipulation queries.
This guide uses the Surreal class, but this example would also work with AsyncSurreal class, with the addition of await in front of the class methods.
pip install surrealdb# Import the Surreal class
from surrealdb import Surreal
# Using a context manger to automatically connect and disconnect
with Surreal("ws://localhost:8000/rpc") as db:
db.signin({"username": 'root', "password": 'root'})
db.use("namepace_test", "database_test")
# Create a record in the person table
db.create(
"person",
{
"user": "me",
"password": "safe",
"marketing": True,
"tags": ["python", "documentation"],
},
)
# Read all the records in the table
print(db.select("person"))
# Update all records in the table
print(db.update("person", {
"user":"you",
"password":"very_safe",
"marketing": False,
"tags": ["Awesome"]
}))
# Delete all records in the table
print(db.delete("person"))
# You can also use the query method
# doing all of the above and more in SurrealQl
# In SurrealQL you can do a direct insert
# and the table will be created if it doesn't exist
# Create
db.query("""
insert into person {
user: 'me',
password: 'very_safe',
tags: ['python', 'documentation']
};
""")
# Read
print(db.query("select * from person"))
# Update
print(db.query("""
update person content {
user: 'you',
password: 'more_safe',
tags: ['awesome']
};
"""))
# Delete
print(db.query("delete person"))SurrealDB can also run embedded directly within your Python application natively. This provides a fully-featured database without needing a separate server process.
The embedded database is included when you install surrealdb:
pip install surrealdbFor source builds, you'll need Rust toolchain and maturin:
uv run maturin develop --releasePerfect for embedded applications, development, testing, caching, or temporary data.
import asyncio
from surrealdb import AsyncSurreal
async def main():
# Create an in-memory database (can use "mem://" or "memory")
async with AsyncSurreal("memory") as db:
await db.use("test", "test")
await db.signin({"username": "root", "password": "root"})
# Use like any other SurrealDB connection
person = await db.create("person", {
"name": "John Doe",
"age": 30
})
print(person)
people = await db.select("person")
print(people)
asyncio.run(main())For persistent local storage:
import asyncio
from surrealdb import AsyncSurreal
async def main():
# Create a file-based database (can use "file://" or "surrealkv://")
async with AsyncSurreal("file://mydb") as db:
await db.use("test", "test")
await db.signin({"username": "root", "password": "root"})
# Data persists across connections
await db.create("company", {
"name": "Acme Corp",
"employees": 100
})
companies = await db.select("company")
print(companies)
asyncio.run(main())The embedded database also supports the blocking API:
from surrealdb import Surreal
# In-memory (can use "mem://" or "memory")
with Surreal("memory") as db:
db.use("test", "test")
db.signin({"username": "root", "password": "root"})
person = db.create("person", {"name": "Jane"})
print(person)
# File-based
with Surreal("file://mydb") as db:
db.use("test", "test")
db.signin({"username": "root", "password": "root"})
company = db.create("company", {"name": "TechStart"})
print(company)Use Embedded (memory, mem://, file://, or surrealkv://) when:
- Building desktop applications
- Running tests (in-memory is very fast)
- Local development without server setup
- Embedded systems or edge computing
- Single-application data storage
Use Remote (ws:// or http://) when:
- Multiple applications share data
- Distributed systems
- Cloud deployments
- Need horizontal scaling
- Centralized data management
For more examples, see the examples/embedded/ directory.
Now that you have learned the basics of the SurrealDB SDK for Python, you can learn more about the SDK and its methods in the methods section and data types section.
Contributions to this library are welcome! If you encounter issues, have feature requests, or want to make improvements, feel free to open issues or submit pull requests.
If you want to contribute to the Github repo please read the general contributing guidelines on concepts such as how to create a pull requests here.
To contribute, it's a good idea to get the repo up and running first. We can do this by running the tests. If the tests pass, your PYTHONPATH works and the client is making successful calls to the database. To do this we must run the database with the following command:
# if the docker-compose binary is installed
docker-compose up -d
# if you are running docker compose directly through docker
docker compose up -dNow that the database is running, we can enter a terminal session with all the requirements installed and PYTHONPATH configured with the command below:
bash scripts/term.shYou will now be running an interactive terminal through a python virtual environment with all the dependencies installed. We can now run the tests with the following command:
pytest --cov=src/surrealdb --cov-report=term-missing --cov-report=htmlThe number of tests might increase but at the time of writing this you should get a printout like the one below:
================================ test session starts ================================
platform ...
collected 227 items
....................................................................................
... (test output)
---------- coverage: platform ... -----------
Name Stmts Miss Cover Missing
---------------------------------------------------------
src/surrealdb/....
...
============================= 227 passed in 6.31s ================================Finally, we clean up the database with the command below:
# if the docker-compose binary is installed
docker-compose down
# if you are running docker compose directly through docker
docker compose downTo exit the terminal session merely execute the following command:
exitAnd there we have it, our tests are passing.
Test against different SurrealDB versions using environment variables:
# Test with latest v2.x (default: v2.3.6)
uv run scripts/run_tests.sh
# Test with specific v2.x version
SURREALDB_VERSION=v2.1.8 docker-compose up -d surrealdb
uv run scripts/run_tests.sh
# Use different profiles for testing specific v2.x versions
docker-compose --profile v2-0 up -d # v2.0.5 on port 8020
docker-compose --profile v2-1 up -d # v2.1.8 on port 8021
docker-compose --profile v2-2 up -d # v2.2.6 on port 8022
docker-compose --profile v2-3 up -d # v2.3.6 on port 8023Use the test script for systematic testing:
# Test latest version with all tests
./scripts/test-versions.sh
# Test specific version
./scripts/test-versions.sh v2.1.8
# Test specific test directory
./scripts/test-versions.sh v2.3.6 tests/unit_tests/data_typesThe CI automatically tests against multiple versions:
- Core tests: Always run against key versions (v2.0.5, v2.1.8, v2.2.6, v2.3.6)
- Comprehensive tests: Scheduled tests against all latest versions
- Auto-discovery: Dynamically finds latest patch versions
# Build the image
docker build -t surrealdb-python:latest .
# Run with uv
docker run -it surrealdb-python:latest uv run python -c "import surrealdb; print('Ready!')"
# Run tests in container
docker run -it surrealdb-python:latest uv run python -m unittest discover -s tests# Start latest SurrealDB for development
docker-compose up -d
# Start specific version for testing
SURREALDB_VERSION=v2.1.8 docker-compose up -d
# View logs
docker-compose logs -f surrealdbThe official SurrealDB Python SDK.
- Python: 3.9 or greater
- SurrealDB: v2.0.0 to v2.3.6 (for remote connections)
- Rust toolchain: Only required if building from source
Note: This SDK works seamlessly with SurrealDB versions v2.0.0 to v2.3.6, ensuring compatibility with the latest features. The embedded database functionality is included in pre-built wheels on PyPI.
-
Install the SDK:
# Using pip pip install surrealdb# Using uv uv add surrealdb -
Start SurrealDB (using Docker):
docker run --rm -p 8000:8000 surrealdb/surrealdb:v2.3.6 start --allow-all
-
Connect and query:
from surrealdb import Surreal async def main(): async with Surreal("ws://localhost:8000/rpc") as db: await db.signin({"user": "root", "pass": "root"}) await db.use("test", "test") # Create person = await db.create("person", {"name": "John", "age": 30}) print(person) # Query people = await db.select("person") print(people) import asyncio asyncio.run(main())
This project uses uv for fast dependency management and hatch for building.
-
Install uv (if not already installed):
curl -LsSf https://astral.sh/uv/install.sh | sh -
Clone and setup:
git clone https://github.com/surrealdb/surrealdb.py.git cd surrealdb.py uv sync --group dev -
Activate environment:
source .venv/bin/activate # On Windows: .venv\Scripts\activate
# Start SurrealDB v2.3.6
docker compose up -d
# Run tests
export SURREALDB_URL="http://localhost:8000"
uv run python -m unittest discover -s tests# Test latest v2.x versions
./scripts/test-versions.sh --v2-latest
# Test specific version
./scripts/test-versions.sh v2.1.8
# Test all supported versions
./scripts/test-versions.sh --all# Development (default - v2.3.6)
docker compose up -d
# Test specific v2.x versions
docker compose --profile v2-0 up -d # v2.0.5 on port 8020
docker compose --profile v2-1 up -d # v2.1.8 on port 8021
docker compose --profile v2-2 up -d # v2.2.6 on port 8022
docker compose --profile v2-3 up -d # v2.3.6 on port 8023# Format code
uv run ruff format
# Lint code
uv run ruff check
# Type checking
uv run mypy src/# Build package
uv build
# Publish to PyPI (requires authentication)
uv publishThis Python SDK supports SurrealDB v2.0.0 to v2.3.6. Here's the compatibility matrix:
| Python SDK | SurrealDB Versions | Status |
|---|---|---|
| v1.0.0+ | v2.0.0 - v2.3.6 | ✅ Supported |
| v1.0.0+ | v1.x.x | ❌ Not supported |
The SDK is continuously tested against:
- v2.0.5 (Latest v2.0.x)
- v2.1.8 (Latest v2.1.x)
- v2.2.6 (Latest v2.2.x)
- v2.3.6 (Latest v2.3.x)
We welcome contributions! Please see CONTRIBUTING.md for guidelines.
This project is licensed under the Apache License 2.0 - see the LICENSE file for details.
To run all tests with coverage reporting:
uv run scripts/run_tests.shThis will:
- Run all tests using pytest
- Show a coverage summary in the terminal
- Generate an HTML coverage report in the
htmlcov/directory
You can also run tests directly with:
uv run pytest --cov=src/surrealdb --cov-report=term-missing --cov-report=htmlTo test a specific file:
uv run pytest tests/unit_tests/connections/test_connection_constructor.py --cov=src/surrealdbTo view the HTML coverage report, open htmlcov/index.html in your browser after running the tests.