Unified API for working with multiple dataclass-like libraries
There are many libraries that implement a similar dataclass-like pattern!
import dataclasses
@dataclasses.dataclass
class SomeDataclass:
a: int = 0
b: str = "b"
c: list[int] = dataclasses.field(default_factory=list)import pydantic
class SomePydanticModel(pydantic.BaseModel):
a: int = 0
b: str = "b"
c: list[int] = pydantic.Field(default_factory=list)import attrs
@attrs.define
class SomeAttrsModel:
a: int = 0
b: str = "b"
c: list[int] = attrs.field(factory=list)import msgspec
class SomeMsgspecStruct(msgspec.Struct):
a: int = 0
b: str = "b"
c: list[int] = msgspec.field(default_factory=list)etc...
These are all awesome libraries, and each has its own strengths and weaknesses. Sometimes, however, you just want to be able to query basic information about a dataclass-like object, such as getting field names or types, or converting it to a dictionary.
fieldz provides a unified API for these operations (following or
extending the API from dataclasses when possible).
def fields(obj: Any) -> tuple[Field, ...]:
"""Return a tuple of fieldz.Field objects for the object."""
def replace(obj: Any, /, **changes: Any) -> Any:
"""Return a copy of obj with the specified changes."""
def asdict(obj: Any) -> dict[str, Any]:
"""Return a dict representation of obj."""
def astuple(obj: Any) -> tuple[Any, ...]:
"""Return a tuple representation of obj."""
def params(obj: Any) -> DataclassParams:
"""Return parameters used to define the dataclass."""The fieldz.Field and fieldz.DataclassParam objects are
simple dataclasses that match the protocols of dataclasses.Field and the
(private) dataclasses._DataclassParams objects, respectively. The field object
also adds a native_field attribute that is the original field object from the
underlying library.
from fieldz import Field, fields
standardized_fields = (
Field(name="a", type=int, default=0),
Field(name="b", type=str, default="b"),
Field(name="c", type=list[int], default_factory=list),
)
assert (
fields(SomeDataclass)
== fields(SomePydanticModel)
== fields(SomeAttrsModel)
== fields(SomeMsgspecStruct)
== standardized_fields
)-
dataclasses -
collections.namedtuple -
pydantic(v1 and v2) -
attrs -
msgspec -
dataclassy -
sqlmodel(it's just pydantic)
... maybe someday?