Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
159 changes: 88 additions & 71 deletions assignment4/experiments/q_learner.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,9 @@
import json
import os
import time
import multiprocessing
import numpy as np
from concurrent import futures

from .base import BaseExperiment, OUTPUT_DIRECTORY

Expand All @@ -18,7 +20,9 @@
class QLearnerExperiment(BaseExperiment):
def __init__(self, details, verbose=False):
self.max_episodes = 2000

self.threads = details.threads
if self.threads == -1:
self.threads = multiprocessing.cpu_count()
super(QLearnerExperiment, self).__init__(details, verbose)

def convergence_check_fn(self, solver, step_count):
Expand All @@ -42,79 +46,92 @@ def perform(self):
self.log("Searching Q in {} dimensions".format(dims))

runs = 1
params = []
for alpha in alphas:
for q_init in q_inits:
for epsilon in epsilons:
for epsilon_decay in epsilon_decays:
for discount_factor in discount_factors:
t = time.clock()
self.log("{}/{} Processing Q with alpha {}, q_init {}, epsilon {}, epsilon_decay {},"
" discount_factor {}".format(
runs, dims, alpha, q_init, epsilon, epsilon_decay, discount_factor
))

qs = solvers.QLearningSolver(self._details.env, self.max_episodes,
discount_factor=discount_factor,
alpha=alpha,
epsilon=epsilon, epsilon_decay=epsilon_decay,
q_init=q_init, verbose=self._verbose)

stats = self.run_solver_and_collect(qs, self.convergence_check_fn)

self.log("Took {} episodes".format(len(stats.steps)))
stats.to_csv('{}/Q/{}_{}_{}_{}_{}_{}.csv'.format(OUTPUT_DIRECTORY, self._details.env_name,
alpha, q_init, epsilon, epsilon_decay,
discount_factor))
stats.pickle_results('{}/Q/pkl/{}_{}_{}_{}_{}_{}_{}.pkl'.format(OUTPUT_DIRECTORY,
self._details.env_name,
alpha, q_init, epsilon,
epsilon_decay,
discount_factor,
'{}'), map_desc.shape,
step_size=self.max_episodes/20.0)
stats.plot_policies_on_map('{}/images/Q/{}_{}_{}_{}_{}_{}_{}.png'.format(OUTPUT_DIRECTORY,
self._details.env_name,
alpha, q_init, epsilon,
epsilon_decay,
discount_factor,
'{}_{}'),
map_desc, self._details.env.colors(),
self._details.env.directions(),
'Q-Learner', 'Episode', self._details,
step_size=self.max_episodes / 20.0,
only_last=True)

# We have extra stats about the episode we might want to look at later
episode_stats = qs.get_stats()
episode_stats.to_csv('{}/Q/{}_{}_{}_{}_{}_{}_episode.csv'.format(OUTPUT_DIRECTORY,
self._details.env_name,
alpha, q_init, epsilon,
epsilon_decay,
discount_factor))

optimal_policy_stats = self.run_policy_and_collect(qs, stats.optimal_policy)
self.log('{}'.format(optimal_policy_stats))
optimal_policy_stats.to_csv('{}/Q/{}_{}_{}_{}_{}_{}_optimal.csv'.format(OUTPUT_DIRECTORY,
self._details.env_name,
alpha, q_init, epsilon,
epsilon_decay,
discount_factor))

with open(grid_file_name, 'a') as f:
f.write('"{}",{},{},{},{},{},{},{}\n'.format(
json.dumps({
'alpha': alpha,
'q_init': q_init,
'epsilon': epsilon,
'epsilon_decay': epsilon_decay,
'discount_factor': discount_factor,
}).replace('"', '""'),
time.clock() - t,
len(optimal_policy_stats.rewards),
optimal_policy_stats.reward_mean,
optimal_policy_stats.reward_median,
optimal_policy_stats.reward_min,
optimal_policy_stats.reward_max,
optimal_policy_stats.reward_std,
))
params.append((alpha, q_init, epsilon, epsilon_decay, discount_factor, runs, dims, map_desc))
runs += 1
print("Totals runs {} to be processed on {} threads".format(runs-1, self.threads))

with futures.ProcessPoolExecutor(max_workers = self.threads) as pool:
for res in pool.map(self.run_q, params):
print("Completed run {}".format(res))

def run_q(self, params):
grid_file_name = '{}/Q/{}_grid.csv'.format(OUTPUT_DIRECTORY, self._details.env_name)
alpha, q_init, epsilon, epsilon_decay, discount_factor, runs, dims, map_desc = params
print("Processing run {}".format(runs))
t = time.clock()
self.log("{}/{} Processing Q with alpha {}, q_init {}, epsilon {}, epsilon_decay {},"
" discount_factor {}".format(
runs, dims, alpha, q_init, epsilon, epsilon_decay, discount_factor
))

qs = solvers.QLearningSolver(self._details.env, self.max_episodes,
discount_factor=discount_factor,
alpha=alpha,
epsilon=epsilon, epsilon_decay=epsilon_decay,
q_init=q_init, verbose=self._verbose, theta=0.001)

stats = self.run_solver_and_collect(qs, self.convergence_check_fn)

self.log("Took {} episodes".format(len(stats.steps)))
stats.to_csv('{}/Q/{}_{}_{}_{}_{}_{}.csv'.format(OUTPUT_DIRECTORY, self._details.env_name,
alpha, q_init, epsilon, epsilon_decay,
discount_factor))
stats.pickle_results('{}/Q/pkl/{}_{}_{}_{}_{}_{}_{}.pkl'.format(OUTPUT_DIRECTORY,
self._details.env_name,
alpha, q_init, epsilon,
epsilon_decay,
discount_factor,
'{}'), map_desc.shape,
step_size=self.max_episodes/20.0)
stats.plot_policies_on_map('{}/images/Q/{}_{}_{}_{}_{}_{}_{}.png'.format(OUTPUT_DIRECTORY,
self._details.env_name,
alpha, q_init, epsilon,
epsilon_decay,
discount_factor,
'{}_{}'),
map_desc, self._details.env.colors(),
self._details.env.directions(),
'Q-Learner', 'Episode', self._details,
step_size=self.max_episodes / 20.0,
only_last=True)

# We have extra stats about the episode we might want to look at later
episode_stats = qs.get_stats()
episode_stats.to_csv('{}/Q/{}_{}_{}_{}_{}_{}_episode.csv'.format(OUTPUT_DIRECTORY,
self._details.env_name,
alpha, q_init, epsilon,
epsilon_decay,
discount_factor))

optimal_policy_stats = self.run_policy_and_collect(qs, stats.optimal_policy)
self.log('{}'.format(optimal_policy_stats))
optimal_policy_stats.to_csv('{}/Q/{}_{}_{}_{}_{}_{}_optimal.csv'.format(OUTPUT_DIRECTORY,
self._details.env_name,
alpha, q_init, epsilon,
epsilon_decay,
discount_factor))

with open(grid_file_name, 'a') as f:
f.write('"{}",{},{},{},{},{},{},{}\n'.format(
json.dumps({
'alpha': alpha,
'q_init': q_init,
'epsilon': epsilon,
'epsilon_decay': epsilon_decay,
'discount_factor': discount_factor,
}).replace('"', '""'),
time.clock() - t,
len(optimal_policy_stats.rewards),
optimal_policy_stats.reward_mean,
optimal_policy_stats.reward_median,
optimal_policy_stats.reward_min,
optimal_policy_stats.reward_max,
optimal_policy_stats.reward_std,
))
return runs