A modern web application for real-time object detection in images and videos using powerful YOLO models. Built with a FastAPI backend and a dynamic JavaScript frontend.
🎥 Watch Demo on YouTube
📁 GitHub Repository
- Real-time object detection (YOLO11)
- Upload image or video easily (drag & drop)
- Choose model type: Fast / Balanced / Accurate
- Smart streaming for video results
- Dark mode styled UI
- Reset and upload new file anytime
- 
Clone this repo git clone https://github.com/Raafat-Nagy/YOLO-Object-Detection-App.git cd YOLO-Object-Detection-App
- 
Install dependencies pip install -r requirements.txt 
- 
Download YOLO models Put your models (e.g. yolo11n.pt) in themodels/directory. Get them from: Ultralytics Official Models
- 
Run the app uvicorn app.main:app --reload 
- 
Open http://127.0.0.1:8000in your browser.
YOLO-Object-Detection-App/
├── app/                # FastAPI backend
│   ├── image_processor.py
│   ├── main.py
│   ├── model_loader.py
│   └── stream_processor.py
├── static/             # Frontend JS/CSS
│   ├── script.js
│   └── style.css
├── templates/          # HTML template
│   └── index.html
├── models/             # YOLO .pt models
│   ├── yolo11m
│   ├── yolo11n
│   └── yolo11s
├── requirements.txt
└── README.md
📸 Here’s how it works:
- FastAPI – lightweight Python backend
- Ultralytics YOLO – object detection engine
- JavaScript + HTML + CSS – frontend
- Font Awesome – icons
This project is licensed under the MIT License.
Feel free to reach out or contribute via pull request or issue!
