大学牲的CV课程实验🥲,基于ResNet改进U-Net,深度监督、融合注意力机制和ASPP模块,实现多类别语义分割。
As a student,it's my CV course experiment 🥲, based on ResNet to improve U-Net, in-depth supervision, integration of attention mechanism and ASPP module, to achieve multi-category semantic segmentation.
- 基于ResNet的编码器,增强特征提取能力
 
ResNet-based encoder enhances feature extraction ability
- 引入注意力机制,聚焦重要特征区域
 
Introduce attention mechanisms and focus on important feature areas
- 集成ASPP模块,提升多尺度目标处理能力
 
Integrate ASPP modules to improve multi-scale target processing ability
- 深度监督,学习多层次特征
 
In-depth supervision, learning multi-level characteristics
- 图像增强 Image enhancement
 
├── ResNet_Semantic_Segmentation.ipynb   # 主代码文件,包含模型构建与训练流程
├── voc-pascal-2012-segmentation         # 数据集文件夹
│     ├── JPEGImages                     # 数据集图片文件夹
      ├── mask                           # mask图片文件夹
      ├── train.txt                      # 训练集索引
      ├── valid.txt                      # 验证集索引
├── README.md                            # 项目说明文档
└── best.pth                             # 模型                           
- Python 3.x
 - Jupyter Notebook
 - PyTorch >= 1.7
 - torchvision
 - numpy
 - matplotlib
 - ...
 



