Skip to content

timesteps in set_timesteps of DDPM and DDIM schedulers doesn't reach end point T (e.g. T= 1000) #8600

@AbrightWay

Description

@AbrightWay

I am reading the source code implementation of DDPM and DDIM schedulers, and I found this line defining timesteps for the schedulers timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].astype(np.int64)

np.arange(0, 100) doesn't return an array from 0 to 1000, it actually returns an array from 0 to 999. Therefore, if we have, say, step_ratio = 10, and num_inference_steps=100 for a model trained on DDPM of num_train_timesteps=1000, then the final self.timesteps would be a 1D array from 990 to 0, NOT 1000 to 0.

I think the right one is: timesteps = (np.arange(0, num_inference_steps + 1e-3) * step_ratio).round()[::-1].astype(np.int64)
Here's the links for the schedulers:

  1. DDPM:
    timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].astype(np.int64)
  2. DDIM:
    timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions